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must have a corresponding value in Egs. (3). From the
third and sixth of Egs. (3), a solution is obtained for sinf, and
6.:

wAZ(J3/J2) - BZ

sinf, = T =7 (6)
. Bz — J;siné,
b. = J3 cosb, @

Similarly, a solution is obtained for siny, and i, from the
second and fifth of Egs. (3):

cos, J1(Js/J2) — Js

wA, + (8., 508, — J; cosd,) sinyg,
Js cosb. cosy,

siny, =

Bbc = (9)

The next logical step in this development is to solve for =
and £, using the first and fourth of Eqgs. (8) in combination
with Eqgs. (6-9). Unfortunately, this step cannot be carried
through in a straightforward manner. The resulting equa-
tions for £ and 7 require the simultaneous solution of two
transcendental equations.

Under laboratory conditions, this solution is practical with
the aid of a high-speed computer. However, the system
being developed here is intended for operational use under
anything but laboratory conditions. If the solution did not,
for some reason, converge properly under an off-design condi-
tion, there would not be time to force convergence nor would
there be time to work out new initial values that might result
in convergence.

Rather than attempt the solution just described, it is sug-
gested that two approximations for £ and 7 be used. These
will result in trajectories that are not flown under constant
thrust. However, the approximations are sufficiently ac-
curate to assure that the throttling range required to ac-
commodate the deficiencies in the solution will be small, on
the order of 29. This has been verified with a two-degree

of-freedom digital simulation, using Eqs. (6, 7, 10, and 11) for"

trajectory control.
The approximations for £ and 7 are given as
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where S = r — r;. The K term in Eq. (11) is found in the
following manner: assume that the first time a 7 is com-
puted during a flight, K.y = 1.0. Compute the thrust
level required to satisfy Eqgs. (10) and (11) from Eq. (12):

Fe=Vim(&/7) (12)

Now compute 8,6, ¢., and ¥, from the appropriate equa-
tions, and then compute the predicted landing point from
Egs. (1) and (3). A predicted slant range vector is computed
as

T =

(11)

Si=r—r; (13)
Then K, is found from Eq. (14):
Sg'St 1/2
K, = < SS > (14)

The K term need not be computed continuously. For most
flights, updating every 10 sec is sufficient. The results
from the digital simulation and the associated error analysis of
this concept are to be reported at a later date.
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Contour Calculations for Chemical
Nonequilibrium Flow
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The problem of a reacting flow expanding through
a divergent nozzle has been examined in the light of
designing nozzle contours to produce specific inter-
relationships among the problem variables. Using
a Pace Electronic analog computer, solutions have
been generated for a variety of parameter restric-
tions. The results show that hydrodynamically
reasonable nozzle shapes may be used to provide a
convenient method of experimentally producing
arbitrary supersonic nonequilibrium flows.

Nomenclature

reciprocal of dimensionless area A
dissociation energy

dimensionless recombination rate, 4rope®nke/ucR*T?T
dimensionless equilibrium constant, Ky/4npoT’
recombination rate

dimensionless term, 4NE4/RTo

equilibrium constant

molecular weight

Avogadro’s number

dimensionless pressure

dimensionless streamline coordinate

universal gas constant

dimensionless temperature

dimensionless velocity

mags fraction of dissociated atomic species
critical throat parameter, pguo?/po

computer time scale factor

dimensionless constant, BRTs/2M su?
dimensionless mass density

computer time
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Subscripts
A = atomic
e = local equilibrium

0

dimensional throat value

N this note a method for designing hypersonic nozzle con-
tours for specified thermodynamic requirements is pre-
sented using the governing equations of pseudo-one-dimen-
sional inviscid flow of an ideal diatomic gas undergoing a dis-
sociation reaction. For nonequilibrium flow, where chemical
reactions proceed at finite rates, the flow properties are de-
pendent upon the axial distance traveled. As a result, it is
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possible to determine unique nozzle area profiles for particular
nonequilibrium flow processes. Since the reaction equation is
nonlinear and the set of equations is closely coupled, there is
no simple closed-form analytical solution.

Although the general formulation of the problem may be
extended to a mixture of gases, e.g., Ref. 1, only a diatomic

model was used to demonstrate the method presented. The

assumptions made with regard to the gas model are as follows:

1) The fluid is a thermally perfect pure diatomic gas.
Viscosity and diffusion are considered to be negligible.

2) The flow is adiabatic.

3) The contribution from energy in electronic and ioniza-
tion states is insignificant for the range of temperatures and
densities considered.

4) The vibrational energy of the molecular species is
approximately linear with respect to temperature.

5) Chemical relaxation is the only nonequilibrium effect
that occurs.

All numerical calculations were based upon oxygen as the
fluid media. Nozzle contours were determined for initial
conditions of 5000°K, 20 atm, mass fraction of dissociated
species 0.800, and an equilibrium mass fraction of dissociated
species 0.646.

The one-dimensional flow of a dissoéiating ideal gas can be
described by the equations of mass continuity (both global
and species), momentum and energy conservation, and the
equation of state. The rate of composition change can be
related to the axial distance traveled so that the simultaneous
solution of this set of governing equations will yield the gas-
dynamic variables, including the flow area, as a function of
axial length. Since the number of equations is one less than
the number of variables, one additional condition, normally
the nozzle contour but in this case a thermodynamic condi-
tion, must be specified to complete the definition of the prob-
lem.

In addition to the basic equations just discussed, there are
a number of auxiliary equations interrelating the thermody-
namic and kinetic characteristics of the problem. The statis-
tical mechanical basis for equilibrium properties is given by
Cambel et al.,? and, in general, the Lighthill ideal dissociating
gas approximations?® are used for this problem. In this analy-
sis a linear temperature dependence of the vibrational energy
was used rather than a constant value as suggested by Light-
hill. Also, the form of the functional dependence of the
equilibrium constant on temperature differs somewhat from
Lighthill’s approximation and is more accurate. This accu-
racy is a result of the fact that with the method of solution
employed the value of the equilibrium constant is set at the
initial conditions, and the only errors are those small deviations
that arise in the process of generating a solution.

Recombination rates in oxygen have been determined exper-
imentally by measuring dissociation rates and then inferring
recombination rates from calculated values of the equilibrium
constant. However, this approach is highly sensitive to tem-
perature, and no real agreement exists at this time. For pur-
poses of this study, the recombination rate was assumed to
vary inversely with the temperature, as suggested by Rink
et al.t

Basically, the analog computer solves initial condition
problems wherein all the boundary conditions can be set at
time zero, and then the solution is generated as a function of
time. In this application to a nozzle flow, considerable care
must be taken to formulate the problem properly, since a
nozzle flow is not an initial condition problem but truly a
boundary-value problem since the exit pressure determines
whether the expansion is subsonic or supersonic. For the
solutions presented here, this difficulty was avoided by start-
ing at the throat and forcing the solution along the supersonic
leg. Ideally, the equations should be cast in a self-compen-
sating form, that is, for a decreasing function the derivative
should be equal to the negative of the variable times a positive
function. This formulation has a tendency to correct itself
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in that, if the variable is too large, it adjusts the derivative to
compensate. Effectively, this approach forces all errors to
oscillate around the proper solution rather than continually
increase as the solution progresses. Often this form may be
affected by replacing a natural variable by an artificial one
such as the reciproeal or logarithm or else a combination of
natural variables.

Since the temperature occurs most often in the set of equa-
tions to be solved, it was chosen as the independent variable
and related to the machine time by the relation

@/dr) 1/T) = 1/A @)

After eliminating the depsity by using the global continuity
equation, the remaining equations become
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All of the variables have been nondimensionalized with respect
to their value at the nozzle throat, and all of the equations
have been written in differential form to take advantage of
the characteristics of the analog computer.

The initial dissociated mass fraction was chosen greater
than the equilibrium value as a matter of convenience in
starting the computer solution. The nozzle throat is desig-
nated as the initial condition, and solutions are generated
from the throat through the supersonic expansion section.
Under the assumption that the nozzle contour is continuous,
the throat may be defined as the point of minimum area; 8
is referred to as the critical throat parameter because its
magnitude determines the critical throat velocity:

Up = [B_(po/ o) JV/2 8)

For the classical gasdynamic nozzle, the throat velocity is
identical to the sonic velocity, and for this special case 8 must
equal the ratio of specific heats. In a relaxing medium, how-
ever, it is questionable that a conventional sonic velocity is
reached exactly at the throat, and thus 8 must represent this
characteristic. In this problem g will be considered only as a
constant defining the throat condition. Both the initial value
of the recombination rate and the length scale factor need not
be specified independently, since only their product is re-
quired. This produet is chosen arbitrarily so that Fo = 1

The contours 4 vs r and the gasdynamical properties as a
function of axial distance for two different restrictions are
shown in Figs. 1 and 2. Since the nozzle throat area does not
appear in the governing equations, the magnitude of the
throat area is not explicitly determined. Although the axial
scale is fixed by the value of Fy, the area scale is dependent
upon the mass flow rate. As a consequence, the nondimen-
sional contours are not necessarily geometrically similar to
actual nozzle contours. Nevertheless, they are indicative of
the relative change in flow direction along the nozzle wall.
The selected mass flow for the nozzle must permit semidiver-
gence angles within acceptable hydrodynamic limits if the
initial conditions are to be physically reasonable.
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Fig. 1 Nozzle profiles;
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The initial studies of nonequilibrium flow in nozzles was
done by Bray,’ who found that, as the flow temperature
dropped, the composition quickly froze as a result of the large
decrease in reaction rate. In this problem the same effect is
caused by the rapid drop of the Fp/u term as the solution
progresses. Since all coupling between the chemical effects
and the thermodynamic variables occurs through the reaction
equation, the solutions in general do not proceed past the point
at which the flow composition freezes. This problem, how-
ever, does not exist if the nozzle distance is specified as a func-
tion of temperature, as shown on Fig. 1. In this case the
nozzle distance is an inverse function of the temperature, and
the fact that the rate of change of r was initially large accounts
for a relatively gradual change in area near the nozzle throat.
An almost conical nozzle with a very short transition at the
throat results.

The mass fraction decaying as an inverse temperature func-
tion is shown in Fig. 2. Additional results for a variety of
cases are given by Widmer.® Although these classes of solu-
tions are restricted to that portion of the nozzle prior to the
freezing point, the coupling terminates at this point, and there
can be no further advantages obtained from geometrical con-
siderations throughout the remainder of the expansion.

The results shown in Figs. 1 and 2 show that the electronic
analog computer is a versatile nozzle simulator that conveni-
ently facilitates the variation of specified processes and the
rapid exploration through a wide spectrum of flow param-
eters. Comparison between specified design properties and
those actually measured in a prototype nozzle system might
afford new insight into the mechanism of real gas flow. In
addition, the precise simulation of extreme flight conditions
may be obtained more readily in the laboratory by proper
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nozzle design, although, undoubtedly, viscous effects would
have to be considered also.
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Axisymmetrical Turbulent Jet:
Tollmien’s Problem Extended
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ANY years ago, Tollmien® ? solved the boundary-layer
equations for the case of an axisymmetrical jet of in-
compressible, Newtonian fluid in isothermal, turbulent flow,
using Prandtl’s mixing-length theory. The case is of con-
siderable interest in the experimental study of turbulence.
Recently, a generalized version of Tollmien’s equation was
solved? in a different context, using numerical techniques dif-
ferent from those of Tollmien. Occasion was taken to recom-
pute Tollmien’s case, extending considerably the number of
points for which numerical results are given, as well as obtain-
ing results for the axial velocity when the kinematic momen-
tum is known and for the axial velocity gradients for which
no data had been available. Also, some of the approximations
to the accurate boundary-layer solutions made in the earlier
work were avoided, and it was thus believed that the present
solution would be somewhat more accurate.
The boundary-layer equations for axisymmetrical, incom-
pressible, isothermal flow of a Newtonian fluid are

ou bu_lbr_m

Yo TV T 5 or 0
ou , 1ofr) _
dz ' r Or =0 @)

where z is the axial coordinate, 7 is the radial coordinate, and
u and v are the velocity components in the two directions,
respectively. The boundary conditions are

r =20 v =0 (3a)
r=20 du/or = 0 (3b)
r= o u=0 Be)t

Equations (1) and (2) are transformed as follows: assuming
Prandtl’s mixing-length hypothesis,
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1 Tollmien assumed a finite boundary-layer thickness gz,
which, by implication, led to a discontinuity in F’’’ at 4 = gz.



